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A very well known fact in sygti% tfieory is that feedback can be used
in order to improve system performance. In the theory of finite dimensional

linear time invariant systems one frequently deals with the question of how

to improve the performance of systems described by the following differential

equation:

x(t) = Ax(t) + Bu(t), (1.1)

where X(t) is ?n n-vector, u(t) an L-vector A (nxn), B(nxt) matrices over

the reals R. If constant state feedback is used,

u(t) = v(t) - Kx(t),

where K is an zxn real matrix, v(t) a reference input, the closed-loop

system is described by:

x(t) = (A-BK)x(t) + Bv(t). (1.2)

A central result in the area of pole assignment [21] is that: (A, B)

is controllable ifffor every symmetric set A of n complex numbers, there is

a matrix K such that A-BK has A, for its set of eigenvalues. This implies

that, under the assumption of controllability, arbitrary pole assiqnment

can be accomplished by constant state feedback.

Rosenbrock in a subsequent publication, [19] showed that more than

pole assignment can be accomplished for the system in (1.1). This result

can be stated in the following manner:*

Let (A, B) be a controllable pair with controllability indecies

1>x > ... >z. z>0. Let fi M<L, be given monic polynomials satisfying the
£

divisibility conditions *.fi ' and with i e(fi)=n' (e(.) denotes degree).

Then there exists a constant matrix K such that the given polynomials are

the non-unity invariant factors of sI-A+BK if and only if

k k
i e(*i)> xi k w i,2,...,t, with equality at k-t. (1.3)
1- 1-
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This result implies that we not only can arbitrarily assign the

eigenvalues of A-BK, but the size and entries of the cyclic blocks

* appearing on the main diagonal of the rational canonical form of A-BK [17].

It is important to note that since (A, B) in controllable so is (A-BK, B)

for any K (ie sI-A+BK, B are left coprime). From a frequency domain

input-output point of view this means that if

Q(s) = (sI-A)Y1 B

is the input-output transfer function of the system in (1.1), where the

output is actually the state, and state feedback (1.2) is used, the closed

loop transfer function becomes:

H(s) = (sI-A+BK)-IB.

Making the invariant factors of sI-A+BK equal to a given set {€i } is

equivalent to saying [12] that MH(s) the Smith-McMillan form of H(s) is

given by

MH(s) = diag( 4i( ) ,

(with appropriate modification if n#L).

In many practical applications, physical constraints frequently

necessitate the use of output rather than state feedback,

u(t) - v(t) + Ky(t) , y(t) - Cx(t), (1.4)

where y(t) is an m-vector and C an mxn constant real matrix. In many

situations static output feedback is insufficient and dynamic output

feedback is introduced:

z(t) - Fz(t) + Gy(t) (1.5)

u(t) - Hz(t) + Ky(t)

where z(t) is a q-vector and F, G, H, K appropriate matrices with real

entries.
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In light of the above Rosenbrock and Hayton [20] attempted to

generalize Rosenbrock's earlier result to the output feedback case. They

proceeded by using the frequency domain input-output point of view by

considering the strictly proper system

P(s) = C(sI-A)'lB = DLP 1 NLP

and the proper compensator C(s) = ALCBLc (no longer sttic) as given

the system matrices (Rosenbrock sense),

1 0 0] 1 0 0]

Pp(s) 0 [ DLp NLP PC(s) = ALC B cJ

The input-output transfer functions P(s) mxx and C(s) (Lxm) have elements

in R(s), the field of rational functions in s over R. The matrices NLp,

DLP, ALC' BLC have elements in R[s], polynomials in s. If the two systems

are connected as in the figure below (output feedback configuration),

a composite system for the resulting closed-loop system is obtained [20]

and then brought by strict system equivalence to the form:
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1

PG(S) 0 ALCDRP+BLCNRP A LC

0 -NRP 0

where D'1NLp= N RpD are left and right matrix fraction descriptions of

LP L C LC R

[5, 12]. The closed-loop transfer function is:

G (s) = N RP (A LcDRp +B LCN RP) "1 A LC .

The basic result in [20] is the following:

Let P(s) = NRpDR1 be an mxt strictly proper transfer function of order n,

with [NDRP] column reduced with column degree l>x2>_ ... >x>O (xi are
NRP

controllability indecies) and u, the largest observability index. Let

lic be given polynomials satisfying the divisibility conditions i'li-1
L

and with I1(4) = n+L(ul-l). Then a sufficient condition for the

existence of a proper Zxm compensator C(s) = ALCBLC such that the invariant

factors of ALCDRP+BLCNRP are the fi is: (1.6)

k k
e(*)>- + -" 1 k - 1,2,...,L with equality at k=s.
I+ l

One should immediately notice several basic differences of this result

as compared with the earlier state feedback result.

a) In addition to the controllability indecies other indecies (namely

observability) become important.

b) This is only a sufficient condition.

c) Dynamic feedback has been introduced.

d) As no coprimeness conditions have been imposed assigning the

invariant factors of ALCDRP+BLCNRP does not imply that the invariant

factors of some sI-A* have been assigned where A* comes from a

minimal realization, but rather that some realization (not minimal)
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can be found such that for the A matrix corresponding to it, sI-A

has the given invariant factors.

e) The order of the compensator used is L(ii-l). There exists the

possibility that a better result can be stated employing a lower

order compensator.

Several attempts have been made to "improve" the output feedback

invariant factor result [6,7,9,10,15]. A partial list of some other recent

publications on the general problem of pole assignment can be found in the

references.

In this paper working in the frequency domain with input-output

transfer functions and using a formulation employing matrix fraction

descriptions and Generalized Sylvester Resultants, we are able to give

short new proofs of Rosenbrock's state and output feedback results.

Furthermore we demonstrate that such a structure easily lends itself to a

"generic" formulation of the invariant factor problem. This allows us to

derive necessary and sufficient conditions for generic invariant factor

assignment in several cases, and prove some other interesting results as

well.



2. Formulation

Throughout the paper we assume the following feedback configuration:

U: P

where P(s) is then mxz input-output transfer function of the given

strictly proper system and C(s) the txm transfer function of a proper

compensator which is to be computed. Both P(s) and C(s) have elements

in R(s). Without loss of generality we assume that m>. In the case

that t>m a "dual" formulation and results can be obtained. The closed

loop transfer function is given by:

G(s) = P(s)(I + C(s) P(s)) "

where we assume that (I + C(s) P(s)) "I exists. Since P(s) and C(s) are

rational matrices they can be "factored" into polynomial matrices, [5, 12].

We use the notation:

R= BRpR a right matrix fraction description (MFD) of P(s),

a A1-18 a left MFD of P(s),
LP LP

P NRPDRP a right coprime (or irreducible) MFD of P(s),

a DLIN a left coprime (or Irreducible) MFD of P(s),

LP LP

where BRP, ARP, NRP, DRP etc are polynomial matrices, where the indeterminate

s has been supressed for simplicity. The closed loop transfer function can

6
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then be expressed in the following ways:KG(s) = P(I + CP) 1

P= BRP(ALcA + BLCBRP) ALC (2.1)

- NRP(ALCDRP + BLCNRP)IALC (2.2)

- NRP(DLCDRP + NLCNRp)IDLC (2.3)!4

=N t-1

RP DLC

Rp DLC least order (or irreducible) (2.4)

where NRP, o are right coprime, 0, LC left coprime. The description (2.4)

is not unique since if N = D = H DLC, i HoE, E, H unimodular then

N-I is also a least order, (irreducible polynomial matrix description

PMD [12]). Clearly since no coprimeness conditions have been imposed

descriptions (2.1), (2.2), (2.3) are not least order.

If MG(S) is the Smith-McMillan form of G(s)

e! --
0

MG(S) = 0

L ~0J

where l. .i< _. are monic and satisfy the divisibility conditions #il i i

2<i<L. using ideas of system equivalence one can show [7, 12] that

F 1 01
* E [. JH

0 C
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where E, H are unimodular matrices. Therefore we call the { i} the

Invariant factors (or polynomials) of the closed loop system. It is also.

clear that the {Oil are the non-unity invariant factors of sI-A where A

comes from some minimal realization of G(s).

If on the other hand we use a description of G(s) which is not least

order G(s) B A with the Smith form of ' being [J

where 21i} , we will have [7) oi'oi 1Wi51. The {*i} will be the non-

unity invariant factors of same sI-K where T comes from a non-minimal real iza-

tion of G(s). The output feedback results of Rosenbrock and Hiyton [20] deal

with this problem.

The difference between the two approaches stems from the fact that one can

work with either external or internal descriptions of systems [12]. From the

results of section 6 it is evident that in the "generic" case the difference

disappears. It should also be mentioned that if no coprimeness conditions need

to be satisfied as in Rosenbrock and Hayton [20], the proofs of these results

are much easier to construct.

It is clear from the above that a very natural way to proceed with

the invariant factor assignment problem is the following:

Given a strictly proper system P(s) - N D find conditions for theRP RP
* existence of a polynomial solution X, Y to the polynomial iquation:

X DRP + Y NRP 3 (2.5)

* where:

1) 0 is equivalent to diag (0i), 0i a given set of desired closed-loop

invariant factors,

2) X1 Y exi.sts and is proper,

3) NRP, * are right coprime and X, o left coprime.

If one considers invariant factor assignment as Rosenbrock-Hayton [20),
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then the 3rd condition is dropped.

The way in which Rosenbrock-Hayton [20] proceed is to use the fact

[18] that all polynomial solutions to (2.5) can be expressed as:

X a 0 - NNLP

Y = V + NDLP

where UDRP + VNRP - I (which is guaranteed since DRP, NRP are right

coprime [7, 12]) and N is an arbitrary polynomical matrix. By

appropriately choosing N they show that XI exists and is proper (if the

given Oi satisfy (1.6)).

We proceed in the following manner: Let NPV DRP, X, Y be given as:

DRp Dts t+ D st- + ... + D
RP t t-l

NRPNts + NtIs + ... + N0

X Xkl sk-l + Xk_2sk 2 + .. + X

Y - Yk-l s k- l + Yk-2 s k 2 +"' + Yo

and let XDRP + YNRP a 0,

-= k+t-I s k+ t -1 + ... + €o 0

Then equating coefficients:

[Xk-l. Yk-l' Xo0' YoSk(DRP ' NRP) = [k+t-l' 0

where

Dt Dt l  ... 0 ... 0

Nt Nt1  ... N 0 ... 0

0 Dt .. D DO  ... 0

Sk(DRP' NRP) = 0 Nt •.. N1  N0  ••• 0 (2.6)

0 0 ... Dt  ... Do

0 0 ... Nt ... N0
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The real matrix Sk(DRP, NRP) is the kth order Sylvester Resultant of DRP,

NRP [16] (a k(m+z)xz(t+k) matrix). Clearly if a 0 exists which is

equivalent to diag (€i), in the range space of Sk(DRp, NRp) where X_ Y

exists and is proper with NRp, 0 right coprime, X, o left coprime we have

a sufficient condition for invariant factor assignment. It would therefore

be very helpful if we knew the rank of the resultant operator. The

following result taken from [1, 16) is crucial for our investigation.

Lemma 2.1 Let ND_1 be proper, mxz with observability indecies pi. Then

rank Sk(D, N) = (1+m)k - (k-ui).
Pi

It would also be very helpful to know under what conditions is diag

(¢i(s)) equivalent to some element in the range space of Sk(DRP, NRP). The

following lemma taken from [20] will be used for this purpose.

Lemma 2.2 Let ail Bil be given integers satisfying al>_=>_..>_L>O,

aIj2>__..>__0>O. Let {¢il<_i<_. satisfy the divisibility conditions

i'Ii-l 2<i<t. Then a necessary and sufficient condition for the

existence of an ixt polynomial matrix o(s) equivalent to diag (fi) and

satisfying lim [diag(s ')(s)diag(s I is
S-Oft

k k
1 e(1 ) >I a. i+0i k=l,2,...,z with equality at kint.

i=l 1=l

Throughout this paper we shall use the following definition of

genericity:

Definition: A set SCRt is called generic if it contains a non-empty

Zariski open set of Rt [24].



3. Rosenbrock's State Feedback Result

In this section we shall use the formulation introduced in the previous

section to give a new short proof of Rosenbrock's state feedback result [19].

Theorem 3.1 Let P(s) = (sI-A) B (where (A, B) is a controllable pair)

with controllability indecies xi> 2>...>£_0 Let €i l<i<.t be given monic

polynomials satisfying the divisibility conditions Oiji-l' 2<i< and with

l('i) = n.

Then there exists a constant C such that the givern polynomials are the

non-unity invariant factors of sI-A+BC if and only if

k k
a e(*i) >_ Z i  k = 1,2,..., , with equality at k=t. (3.1)

1=1 il

Proof:

(Sufficiency). P(s) is nx, strictly proper with observability indecies

all equal to v=l. Let P(s) = NRpDR where
RP R

D RP L D hc] diag(s ) + L(s), Dhc invertible, L(s) contains

lower order terms, [12]. This implies that

D RP=DX s +DIX s 1
1 1-1

NRP = xI.is + .+ No

Sl(DRP, NRP) = [DX1 DX -D N0

10 NX1-  No0

From Lemma 2.1 rank S1 = n+t. Now the number of non-zero columns of S1 is

(xl+l) + (x2+1) + ... + (A L+) = n+Z. Let C X 1'Y where

X hc

Y " Y0  (constant).

11
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Then by appropriately choosing Y0 any polynomial o(s) can be reached which

satisfies lim (s(s)diag(s )) -I. But if the {oi} satisfy (3.1) then
S-)=

from Lema 2.2 with ai=ui , Oi =O a polynomial o*(s) equivalent to diag(*i(s))

can be constructed which satisfies lim (o*(s)diag(s ')) = I. Let Y * be

the Y that corresponds to it. Then C = DhcYo* is the desired compensator

since G(s) = (sI-A+BC)- B = NRP *(s) - 1 both being irreducible representations

([12], Lemma 6.5-9, p. 446).

(Necessity). Suppose that C is a constant that makes the closed loop

invariant factor be equal to {Oi}. Let G(s) = NRP(DRP+CNRp) " . Clearly

NRP, y = DRP+CNRP are right coprime.

This means that the invariant factors of ' are the {0.1.

Now lim (, diag(s )) lim ([I C] DRP diag(s i))
S-Wm S-W IN IL RP

= Dhc

where det Dhc 0 0. Clearly Dl = T satisfies lim ("l diag(s ))

= I and has invariant factors {Oil. From Lemma 2.2 the degrees of the {Oil

must satisfy (3.1).



4. Rosenbrock-Hayton's Output Feedback Result

Ideas developed in section 2 can be used to give a new short proof of

Rosenbrock-Hayton's output feedback result [20J.

Theorem 4.1 Let P(s) - NpDRl be an mxI strictly proper transfer

function of order n, with DRP 1 column reduced, with column indecies
L NRP j

Xlx2__ ... >xO (ki controllability indecies), and ul the largest

observability index. Let 0i 1<< be given polynomials satisfying the
I

divisibility conditions Oioi.1 and withiI e(ol) - n +

Then a sufficient condition for the existense of a paper txm compensator
C(s) - ALBLc such that the invariant factors of ALCDRP + BLCNRp are the

{il is:

k k
e(*i) > (Ai+Vl-l) k = 1,2,..., t with equality at h=t. (4.1)

i ~ i(l

Proof:
D RP D cJ diag(s i) + L(s), Dhc invertible with L(s) containing

lower order terms. This implies that

DRP - D Al + D X sis + .. + Do
NRP = N X lls + + NO

and S I(DRP, NRp) the ur-order Sylvester resultant of DRP, NRP (2.6).

From Lemma 2.1 Su (DRP, NRP) is rank n+tu1 . Now the number of non-zero

columns of S I(DRP, NRP) is (xl+l)+(x2+l) + ... + (xl+l) + (ul-l)L- n+ u .

Let C X Y where
XuX~ 1 -1 1 -

X X UrlS + ... + X

Y Y1-1 s  + ""+ Yo
P 1 3
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This means:

[XU -1 'Y 1  '  XolY 0 S )I (D RpNRP) = foxl+U -1 . o"

Since S 1(DRPNRp) is rank n+uI, any polynomial o(s) which satisfies

m(diag(s'( 1)(s)diag(s )) H

H constant can be reached. In particular any polynomial o(s) for which

the corresponding H is the identity. Since

r x i + 1 "1
[X, Y1N D pRP = X 1_D hcdiag(s + t(s)

I N] P

(L(s) contains lower order terms) the X corresponding to such a o(s) must

have X D Ie C = XIY must exist and be proper [12].
hvX l hc

But if the {#} satisfy 4.1 then from Lemma 2.2 with ai=xi si-ul-l a

polynomial o*(s) equivalent to diag(Oi(s)) can be constructed which

satisfies

lim(diag(s~u l )*(s)diag(s')) = I.

Then C = XI Y, for any X, Y which maps to o*(s) is a compensator which

satisfies the requirements of the theorem.



5. The Equation XD + YN -

It has been mentioned in section 2 tiatthis polynomial matrix equation

plays a key role in the analysis of the invariant factor problem. Using

Sylvester Resultants we are able to prove the following two results.

Proposition 5.1 Let.P - NRpDRP be an mxt strictly proper transfer

function where FDRPI is column reduced, with column degrees x i a x and

LNRPA
observability indecies vi = us

D RP a ISA + D .ls'l + ... + DO, NRP = N,_sX-l + ... + N 0

Let Z = (,(+q)L 2 = Is +q + OX+q-lsXl + ... + to}

Q - {(X,Y)IX = Isq + Xqls q-1 + ... X0 , Y = Yq sq + ... yo}

A necessary and sufficient condition for the existence of a polynomial

solution X, Y to XDRP + YNRP = o in the class Q, for every 0 in Z is qou-l.

Equation XDRp + YNRp o s with the conditions imposed can be written as:

[I, Yq, ... X0 Yo]Sq+l(DRP, NRP) -- [ X+q-1" ""' 0o]3

where Sq+l(DRP, NRP) is thought of as an operator from RL(L'+f)(q+l)

into R (C+q+l)t . From Lemma 2.1

rank Sk = (t+m)k lk<u

= (t+m)k- m(k-u) u<k

Therefore

a) Sl' $2' "'" SU- 1 are not onto,

b) S is onto and one-one,

c) S +l, S+2 ... are onto.

Proof:

(Necessity). Assume that q<)-l and that XDRP + YNRP = o has a solution

in Q for every t in Z. Thinking of (X, Y) as an element in RL((X+m)q+m)

15
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and o as an element in R(x+q ) one can see that the set of t which can be

reached from elements in Q, form a set of dimension less than L(q+X)L.

Therefore q>u-l.

(Sufficiency). S+k in onto for k>O. This means that for any 0 in Z

there exist X, Y given by

X = X kv +k- + +.. +

Y = Y u+k-IlSu+k'l + +. y+Yo

such that

X +k-l' Yu+k-l' "'" X o Y oS u+k = [I, Ox+u+k-2' .'0 to]

For this to happen X +k = I which implies that (X, Y) c Q.

This result addresses the following question: Suppose we fix the

order of the proper compensator (order is qL), as well as the observability

indecies (all equal to q). What are the possible t (closed loop denominator

matrix) that can be reached. Since Xi = X and ui = U the result concerns

the "generic" case. In the next section these concepts will be used for

obtaining necessary and sufficient conditions for generic invariant factor

assignment.

A polynomial solution X, Y to XD + YN = 0 is called an acceptable

solution if X'IY exists (le detXOO) and is proper.

Proposition 5.2 Let N (mx), D (xi), 0 (xi) be polynomial matrices,

X, q non-negative integers, n u v A, and let W, Z, S be the ;ets:

W = {(ND)c R( )nI D = IsX+D,.is'+...+Do , NN X-lS +...+N 0

Z= { R R(X+q)i.2J = IsX+q+,x+q-lsN+q'l+...+o }

S - ((ND)c R(h't)n For which there exists an acceptable solution,

, X, Y to XD+YN-o for every * in Z.

A necessary and sufficient condition for S to be a generic subset of

R(m+L)n is qo y-l.
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Proof:

(Necessity). Suppose that S is generic and that q<u-l. Show a contradiction.

The set F E-R(m+1)n for which rank Si(D,N)=(m+L)i for l<i<_u and rank

S Ul(D,N)=(m+z)U+L is generic. It certainly contains a Zariskiopen set and

it is non-empty since any (N,D) which gives rise to an ND-1 with equal

observability indecies must belong to it (Lemma 2.1). As a matter of fact

any (N,D) in F must have equal observability indecies because otherwise one

of the rank conditions would be violated (Lemma 2.1). It follows (Corollary

I Bitmead et al.) that for any (N,D) in F, N,D are right coprime, and ND"I

has equal controllability indecies as well.

Let N,D be an element in SflF. For any such element (Corollary 2, [20],

p.848) it must be that e(Y)_<q, (X,Y) some acceptable solution. But this

implies that any acceptable solution must be of the form:

X = Isq+Xq-lsq-1+...+X °  Y = Yqs q+ ' ' +y 0
which means (X,Y)E Q, Q as in proposition 5.1 and q>1.-l. This is a

contradiction.

(Sufficiency). Let q>-l. From Proposition 5.1 we have that Sq+I(DN)

is onto for any (N,D) in F. This means that there exist X,Y such that

X = X ssq+...+X °  Y = Yq sq+..

and [Xq 'Yq , X° ,Yo ]Sq+l (D,N))[I, X+q-1 0o

for every t in Z. It follows that Xq=I and that (X,Y) is an acceptable

solution.

This result is stronger than Proposition 5.1. The-restriction of

searching for a solution of XD+YN=o that belongs to a certain class Q can

be removed. This is because an acceptable solution (X,Y) to XD+YN=o with

N,D,t as above, must belong to the class Q, there are no acceptable solutions

outside Q.
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The previous two results dealt with the case when P = NRP DRP is a

strictly proper transfer function with equal controllability indecies.

Knowledge of the rank of the resultant operators Si(DRp. NRP) played a key

role in their proof. Proposition 5.3 addresses the question of the generic

rank of Si(D, N) when P = N D"1 is an zxL strictly proper transfer function

with an arbitrary set of controllability indecies xi " X2 z ... xAL z 0.

Proposition 5.3. Let P = N D"1 be our uxt strictly proper transfer function

with controllability indecies x " 2 z x " > 0 , n - X + ... + x,

n and

L diag (s + L(s)
N0

L(s) contains lower order terms. The i air (N, D) can be thought of as an

element of R2n'. The set W-R of (N, D) for which Si(D, N) has rank 2ti

for 1 ! i < U is a generic subset of R2nL.

Proof:

It is clear that the set of (N, D) for which Si(N, D) is rank 211L for

1 5 i f. u is a Zariski open set. The difficulty lies in proving that it is

indeed non-empty...

We first construct the submatrix T (N) of S (D, N) and show that it is

generically full rank.

NAi1 N. 0 .. 0 0

T (N)- . .= [Bx - 1 9. ' .B0 )

NA 1-2 No  0

NX-1 NX1- 2 •..N 1 No
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where Bi is the ith p.xt block column of T (N). Form T U*(N). from T (N)

deleting the columns indicated:

From the tth columns of the B 's keep the Lth columns of B0 ... B -1

and remove the rest.

From the (t-l)st columns of the Bj's keep the (L-1)st columns of

Bog...,OBX.-1 and remove the test. And in general from the (L-i)th columns

of the Bj's keep the (t-i)th columns of B0 ,...,B tI 1 and remove the rest.

What remains is the nxn matrix T *(N).

Clearly the set V = {NRn I T*(N) rank n} is a Zariski open set in RflL.

We claim that it is non-empty. Thit can be seen from the fact that an N*

exists that makes T *(N*) after a proper rearrangement of its columns equal

to a lower triangular matrix with l's on the main diagonal.

It is now easy to see that SU (I diag(s N*) is rank 2PL (and that

rank St(I diag(s 1 ), N*) = 2t. for 1 < 1 < v).

Expressing it in a different way Proposition 5.3 guarantees that "almost

all" xt strictly proper transfer functions of McMillan degree n ).I + 12 +
n >L

with arbitrary controllability indecies 1X '

have equal observability indecies u.



. .... .1 ....

6. Invariant Factor Results

In section 2 we made a distinction between what we call the invariant

factors of the closed loop system and what has been used by Rosenbrock-

Hayton [20]. The difference arises because we insist on working with

irreducible polynomial matrix descriptions (PMD's 12) whereas Rosenbrock-

Hayton [20] choose not to. It can be said that since the difference is

due to possible cancellations that in some ."generic" sense the two

definitions are the same. In this section we will exploit the ideas

presented thus far in order to obtain necessary and sufficient conditions

for invariant factor assignment in several cases.

Theorem 6.1 Let P=ND 1 be an txt strictly proper transfer function

where x>o and

D = IsX+DX'1 0+...+Do

N = NX_lsX +...+N o

Let q>0 and *(s) = s xs+q-l+...+# .

Let W = {(N,D,)eR 2 a 2 + +q  For which there exists a proper
compensator of order L.q making

41-*2- ... #="the invariant factors
of the closed loop system.

Then q>x-I is a necessary and sufficient condition for W to be a generic
2

subset of R21 +x+q

Proof:
(Sufficiency). Let q>-l and t=2x 2+x+q. Show that W contains a non-

empty Zariski open set. Let 0 be the diagonal matrix

a " diag(*l) 'i = f "  (6.1)

Since q>X-l (we are dealing with the square case L=m,= L &X). The setm
F _ Rt, of (N,D,o) for which Sq+l(DN) is full rank is generic. Let

20
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Sq+ 1 be the matrix (Bq+l)m+q3x(x+q)x) obtained from Sq+l by removing the

first L rows and t columns. Clearly Sq+, is generically full rank. This

implies that for any o as in 6.1 there exists X=Isq+...+X o0 Y=Y sq+...+Y oq 0

such that

[Yq Xo 'YoSq+l = +q-1 go]-[DX- Do9O'" 0]

One such XY(C=X'IY proper of order tq) is given by:

[Y "X' Y 01  Z A+q-l" "" o -[D X1 .... 0)-I ((.z

J(: - -I T(62
(q+l Sq+ l) Sq+l

-Tq+I.-q+ is invertible since Sq+ I is full rank and with fewer columns

than rows.
This means that Xi, Yi are rational expressions in the parameters of

N, D, *. Now the set E S Rtfor which 0, X are left coprime and N, o right

coprime is a Zariski open set, since coprimeness is a condition satisfied

when certain matrices are full rank (Corollary 1, [l]).

The key point to demonstrate is that E is non empty. We claim that

= (Ne, Da, a)

D = Isx , N = I , C = IsX+q+I

is a point in E. Clearly Na, * are right coprime since [ *a] is full
N a

rank for all s [19]. Now for this specific o the solution given in (6.2)

can easily be computed to be

X = Isq , Y = I.

Clearly X , o are left coprime.

Since G(s) a N(XD+YN)'X for any (N,D,*) in E with X,Y given by (6.2) is

a least order (irreducible) polynomial matrix fraction description of G(s)

and

XD + YN
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the invariant factors of G(s) are the €i" Clearly E C W and thus W is a

generic-subset of Rt.

(Necessity). Let W S Rt be the set of (N,D,) for which there exists a

proper compensator C = X-1Y which makes *l=2*..=L= the closed loop

invariant factors. Assume that it is generic.

For any acW the following must be true. Let C - X be the proper

compensator of order Iq that accomplishes the task. We choose X to be

row reduced and let ql>.q2 >...>q>o be the row degrees ql+q 2+...+q,=Lq, and

Xhc = I, the highest row degree coefficient matrix of X.

The following three facts must be true for such an a.

1) The matrices N, XD+YN must be right coprime and X, XD+YN must be left

coprime. Since

e(det(XD+YN))= xt+Lq

if there are cancellations then the resulting denominator matrix will be

TURN where

e(det(XD-N) )N<xt+Lq.

But then the {(,=-J could not be the invariant factors of the closed-loop
L

system since I le(*t) - Xu+xq.

2) In actuality the row degrees of a row reduced representation of

C = X'y must all be equal to q.
Now lim diag(s ) [ Ddlag(s) I.

From 1) XD+YN has Invariant factors {file}. From Lemma 2.2 this implies that
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k k
X e(i)> X +qi k=l,2,... with equality at k=t.1-I 1

This implies x+q > x+ql If ql<q then q+...+q,$tq.

Therefore q,=q. But 2x+2q > 2X+q,+q 2 = > q2=q and generally qi=q.

3) Since X,Y must be of the form
X= Z Isq+Xq lsq+...+X o , Y = Y q sq+Yq- sq+..+Y

it must be that

XD+YN = [ , * the given polynomial.

0

In general

XD+YN = I+q+tI+q-1s +q'l+...+0 T

But since the invariant factors of 0 are *l=42=...=0t=4 this means that

the gcd of lxl minors in particular must be 0. This is a polynomial of

degree X+q. All off-diagonal entries in T are of lesser degree or zero.

They cannot be of lesser degree therefore they are zero.

With all this in mind suppose now that q<x-l. Then for any £ in

W, ie for generic a we must have

[I' ,Yq...P IXo Sq~ (D,N)-[ I 'Xq1' to

= 9 dTagonal

Look at the first row of this matrix equation:

yS q+ (DN)-[I,0...0, f;k+q-1'0" 0 ""'o O...J =

where _ is a Ix2(q+l)L vector, Sq+I(DN) a 2(q+l)Lx(.+q+l)t matrix and _

a (X+q+l)t vector.

Let u - 2(q+l)t , v - (X+q+l)z

If we partition Sq+I(DN) - [A',B]
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where A is uxu and B is uxv since q<x-I it is clear that u<v. The matrix

A is invertible for a generic subset of Rt (A has a resultant structure).

y u A -

where u is the first u entries in the j vector. But since there are more

equations than unknowns it must also be that

yB = -v-u (6.3)

where ¢vu are the remaining v-u entries in j. But relationship (6.3) is

only satisfied on a Zariski closed set of Rt. This is a contradiction.

This completes the necessity part of the theorem.

Theorem 6.1 in effect says that for almost all strictly proper

transfer functions of McMillan degree n=xi and equal controllability

indecies, a necessary and sufficient condition for the existence of a

proper compensator of order 2.q which makes the closed-loop invariant

factors equal to 0=01=...=- for almost all * of degree x+q is q>x-1.

It is necessary therefore that the order of the compensator be greater

than or equal to t( -l). It should be emphasized that here we are

considering the square case where X=V, u the observability index of the

transfer function P. Thus t(u-l) is the more appropriate bound.

Theorem 6.1 addresses the case of strictly proper transfer function of

McMillan degree n = X1 and equal controllability indecies. Theorems 6.2,

6.3 and 6.4 deal with the more general case.

Theorem 6.2. Let P *ND " be an ix strictly proper transfer function where

X , n O, n + X2 + .. X9 V and

[NJ =[L] dlag(s 1) + L(s)

with L(s) containing lower order terms.

Let {Oil be t monic polynomials Oioi~ii 2 - i Z L such that e(oi) =i + q.
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Let W = {(ND,€,...,¢) R2ni+X1+q For which there exists a proper compen-

sator of order lq making {Oi} the invari-

ant factors of the closed loop system.

Then q Z u - 1 is a necessary condition for W to be a generic subset of
R2nt.+,x+q"

Proof: Let W C Rt (.t = 2n2+AX 1l+q) be the set of (N,D,O, ...,90) for which there

exists a proper compensator C = X-1Y, of order zq which makes (oil the closed

loop invariant factor. Assume that it is generic.

For any aeW the following must be true. Let C = X'Iy be the proper

compensator that accomplishes the task. We choose X to be row reduced and

let q Z q2 >  qz Z 0 be the row degrees ql + q2 + "'" + qL a iq and

Xhc = I the highest row degree coefficient matrix of X.

The following three properties must hold for such an a.

1) The matrices N, XD + YN must be right coprime and X,X9 + YN mus. De lest

coprime, (follows proof of Theorem 6.1).

2) The row degrees of a row reduced representation of C = X-1Y must all be

equal to q.

Now tim diag(s 1) [X Y1 [D] diag(si) = I.

From 1) XC + YN has invariant factors {Oil . From Lemma 2.2 this implies

that

k k
84¢)  1 X + qi i - 1,2,...k with equality at k a L.

ii 1 =i1

This means that X1 + q x A1 + qi. If ql < q then ql + ... + q, f tq.

Therefore ql - q. Proceeding in the same fashion X, + X2 + 2q X, +

A2 + ql + q2' means q2 a q and so on, resulting in qi " q 1 5 1 s z.

A



26

J

3) Since X, Y must be of the form

X - Is q + X q-1 sq-1 + . + XO,  Y = Yq s q + +. +

it must be that

*1

XD + YN =2

X 3

L X X X -

where {€i} are the given polynomials and the X's indicate possible non-

zero locations. In general

XD + YN = I dag(s ) + Q(s)=

Since (€i} are the Invariant factors of 4, this means in particular that

{e(¢L) = XL + q) is the gcd of 1x1 minors of 0. Since off-diagonal

entries in the Lth column are of degree less than X. + q they must be

zero. Furthermore the gcd of 2x2 minors of 0 is *t.*Ll(e(*L.*t_)

Ix + Xt-I + 2q). Since off-diagonal entries in the L-1 column are of

degree less than X,_, + q, above the diagonal entries must &e zero.

Continuing in this fashion we see that claim 3) is true.

Suppose now that q < u - 1. Then for any a in W(i.e. for generic

a) we must have:

[I, Yq,...,X0 YO] Sfq+ 1(D, N) - [Ox1+q, t ]

where Sq+I(D, N) is the (q+1)2t x n + L(q+l) matrix obtained from

Sq+I(D, N) by deleting its all zero columns. Looking at the first row

of this matrix equation:

Y "q+1(D, N) w [1,.... >.1+q.1,0,...,0,...,€0,0, --
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A contradiction follows as in the proof of Theorem 6.1, where now use

is made of Proposition 5.3. This completes the proof of Theorem 6.2.

We see that as in the case of equal controllability indecies q . p - 1

-is a necessary condition for generic invariant factor assignment, where v is

the observability index of the transfer function P. We believe than q =

p - 1 is a sufficient condition as well, as can be seen from the next two

results, where it is shown to be the case when the controllability indecies

are as in a) or b).

a) 21t, k Z 1, X1 = =.. 9-- = k + 2, A = ... = k
2 +1

b) 31t, k ! 1, X1 = . k + 2, x + 1 = ... 2_2t k + 1

S _S T
3 +1

Theorem 6.3. Let P = ND"1 be an LxL strictly proper transfer function where

is even, k z 1,

}'1 = ) 2 = 2= X = k+ 2 , 3..1X = k, k + 11 F

L N L i dag(s +) L+ s

Let {0j } be x monic polynomials Oioi_ 2 < i t t such that G(Oi) = Xi + q.

Let
For which there exists a proper

W ={(NDojI €,o) cR2nt+xl+q compensator of order Lq making
(0i) the invariant factor of

the closed loop system

Then q a - 1 is a sufficient condition for W to be a generic subset of

2n +Al+q
R
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Proof:

Let q V -1 and t = 2nt + X + q. Show that W contains a non-emoty

Zariski open set. Since q = - 1 the set F = Rt of (ND,,...,C.) for

which S (D, N) is full rank is generic. This implies that for any o of the

form

o= diag(0i)

a unique solution to X =Isq + ... + X0  Y = Yq sq + "+ Y0 to.

XD + YN = o exists given by:

[I, Yq, Xq.1, ... XO, Y0) =q-1 1 .F01+q • .- ,

This means that Xi, Yi are rational expressions in the parameters of ND, ,

Now the set E = Rt for which 0, X are left coprime and Nt right

coprime is a Zariski open set. They key point is to demonstrate that E is

non empty. It can be verified after some algebraic manipulations that with

1it s k+2  0 -1,0"

D- N-

0 I Sk I s I

I 1  0

= z where 02 = (s+1)2k (s+l)2k (s2_1)

0 1 n2

T (D,N) is invertible and X,. are left coprime and O,N right coprime.
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Theorem 6.4. Let P -ND " be an ix strictly proper transfer function where

31t, k =1 2=k+k

1'1 t ' - = k + 2, At X .. 2z z k + 1, X2L A .. t k

3 i+ T T+1

b] ]diag(s') + L(s)

Let {0j } be t monic polynomials Oi*oi*i 2 s i < i such that e(oi) -

i+ q.

Let

2nt+,x1+q For which there exists a
W - {(N,D,,...,.) cR proper compensator of order

Lq making {0j } the invariant

factors of the closed loop
system

Then q =u - 1 is a sufficient condition for W to be a generic subset
ofR2ntL+,l+qof R

Proof: The proof proceeds in a similar fashion as Th. 6.3. The point

which shows the non-emptiness of W is the following:

-I s k+2  0 0 -t- 0 0-

D - 0 1  sk+ 0 N= 0 1 0

0 0 ts k I is 0 IL

1 0 0

- 0 I*o2 0

3
0 0 I 3
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where *3 (s+1) 2k 2= (s+1) 2k+1 = (s+1) 2k+1 (s-i).

Remark: Sufficiency proofs for many more controllability index configurations

have been constructed by using a different test point in each case. This makes

it difficult to construct a general test point that can be used in every case.

Now it is evident that there are two basic issues concerning invariant

factor assignment. One is the allowable degrees of the closed leap invariant

factors (i.e. the sizes of the attainable cyclic blocks of A, where A comes

from a minimal realization of G(s)) and the other is the reachable invariant

polynomials themselves. That is assuming an allowable set of degrees is it

possible to reach all (or almost all) such polynomials. The necessary condi-

tion appearing in Rosenbrock-Hayton [20] is addressing the allowable degrees

issue. Here we have assumed a particular degree configuration (which inci-

dentally is compatible with their conditions) and are investigating the issue

of the order of the compensator needed for almost arbitrary invariant factor

assignment.

It is important to mention that different degree assignments require

different order compensators. This is evident from Theorem 6.5.

Theorem 6.5 Let P = ND 1 be an mxl strictly proper transfer function

where x>o, n-xa and

D = IsX+DX.ls Xl+...+Do

N a N ~XIl+...+NO0

nq, sn+q+1+

Let qo and *(s) = s n+q+l "'+* 0

Let For which there exists a proper
2a 2+n+q compensator of order q making f #,, )

W *{((N,D,*) R2=*3=...€- the invarlant falors

of the closed-loop system.
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Then a sufficient condition for W to be a generic subset of R2 u 2 +n+q is

q -l.

Proof:

Using the Sylvester Resultant formulation one can show [8] that if
2

q u-l then the set M 9 R2Xa +n+q of (N,D,f) for which a proper compensator

of order q exists and of the form:
0 - . .I. 0" 'XI

0 0q-1i 0X 0 Osq+ 0 sq!.+ I

0 0

L 0 0 0

'"" qyii "#1 '--" - Gm"
0

Y 0 s q+' ; l 0

L L 0

which makes + the closed loop characteristic polynomial is generic.

XD+YN - o where deto a #.

But because of the structure of o it can easily be shown that the set JC_

R2XL 2'+n+q for which the gcd's of the lxi minors of o for l1<i-l are all

equal to 1 is generic. Therefore the set J34 for which 01"1 02'03-...=Aul

are the invariant factors ofo is a generic subset of R2XL +n+q"

Similar versions of this theorem have appeared in the past [2, 12, 20].

The approach taken here is different. As mentioned earlier in the case when

> m a "dual" formulation and results can be obtained.



7. Conclusions

The problem of generalized pole assignment using output feedback has

not been completely solved as yet. Great progress has been made as

evidenced by many important contributions [see references]. In this paper

using a formulation involving Generalized Sylvester Resultants we were

able to give new short proofs of earlier results as well as suggest

necessary and sufficient conditions for generic invariant factor assignment

in several cases. We believe that the ideas presented here can be used to

obtain many more results.

The authors wish to thank Professor Chris Byrnes for many helpful

discussions.
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